1,254 research outputs found

    Effect of high frequency ultrasounds on lycopene and total phenolic concentration, antioxidant properties and α-glucosidase inhibitory activity of tomato juice

    Get PDF
    Tomato juice was subjected to high frequency ultrasounds(378 and 583 kHz)at increasing energy densities (up to 250 MJ/m3). Results relevant to the treatments at high frequency providing an energy density of 250 MJ/m3 were compared with those obtained at 24 kHz delivering the same energy density. Lycopene and total phenolic concentration, as well as the α-glucosidase inhibitory activityof tomato juice, were not affected by ultrasound regardless the frequency and energy density. However, the antioxidant properties were negatively affected by high frequency ultrasounds

    On Protected Realizations of Quantum Information

    Full text link
    There are two complementary approaches to realizing quantum information so that it is protected from a given set of error operators. Both involve encoding information by means of subsystems. One is initialization-based error protection, which involves a quantum operation that is applied before error events occur. The other is operator quantum error correction, which uses a recovery operation applied after the errors. Together, the two approaches make it clear how quantum information can be stored at all stages of a process involving alternating error and quantum operations. In particular, there is always a subsystem that faithfully represents the desired quantum information. We give a definition of faithful realization of quantum information and show that it always involves subsystems. This justifies the "subsystems principle" for realizing quantum information. In the presence of errors, one can make use of noiseless, (initialization) protectable, or error-correcting subsystems. We give an explicit algorithm for finding optimal noiseless subsystems. Finding optimal protectable or error-correcting subsystems is in general difficult. Verifying that a subsystem is error-correcting involves only linear algebra. We discuss the verification problem for protectable subsystems and reduce it to a simpler version of the problem of finding error-detecting codes.Comment: 17 page

    Probing the Density in the Galactic Center Region: Wind-Blown Bubbles and High-Energy Proton Constraints

    Full text link
    Recent observations of the Galactic center in high-energy gamma-rays (above 0.1TeV) have opened up new ways to study this region, from understanding the emission source of these high-energy photons to constraining the environment in which they are formed. We present a revised theoretical density model of the inner 5pc surrounding Sgr A* based on the fact that the underlying structure of this region is dominated by the winds from the Wolf-Rayet stars orbiting Sgr A*. An ideal probe and application of this density structure is this high energy gamma-ray emission. We assume a proton-scattering model for the production of these gamma-rays and then determine first whether such a model is consistent with the observations and second whether we can use these observations to further constrain the density distribution in the Galactic center.Comment: 36 pages including 17 figures, submitted to ApJ, comments welcom

    THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS

    Get PDF
    Recent studies of terrestrial glaciovolcanic terrains have elucidated the utility of volcanic deposits as recorders of ice conditions at the time of eruption. Practically all of these investigations, however, have focused upon the associations of volcaniclastic and coherent lava lithofacies at or proximal to the source vent. Very few studies have documented the emplacement of effusion-dominated, basaltic glaciovolcanic eruptions and their distal deposits that more accurately reveal paleo-ice conditions. Both Mauna Kea volcano, Hawaii and the Tennena volcanic center (TVC), on Mount Edziza, British Columbia, Canada, preserve records of interaction between coherent lavas and an ice sheet inferred to be associated with the last glacial maximum (LGM). The identification, mapping and description of subglacial TVC lava flows reveals the spatial distribution and characteristics of primary volcanic lithofacies and associated glaciogenic lithofacies, and reveals the processes of the emplacement of the distal lava flows under thick ice. Exposure dating with cosmogenic nuclides proves the most effective technique to temporally constrain the emplacement of these subglacial lavas. This work shows; 1) classification schemes that utilize remotely sensed imagery are locally robust but are not readily viable as identifiers of subglacial lavas in other volcanic terrains, 2) the distribution of primary hydrovolcanic clastic deposits at the TVC are confined to the cone, but coherent pillow lavas including distinctive vertically-oriented and distended pillows are widespread, 3) multiple lobes of massive sheet lavas record high initial magma discharge rates, 4) associated glaciogenic facies that underlie or onlap the TVC lavas indicate active subglacial meltwater drainage at the time of the eruption. Analyses of H2O/CO2 in pillow rim samples give broad constraints for emplacement pressures equivalent to 500-1400 m of overlying ice. No subaerial lava morphologies are found on the cone or in the proximal to distal lithofacies, and the sequence is interpreted as documenting an eruption of basaltic lava flows beneath either the LGM Cordilleran ice sheet or a Younger Dryas expansion of the still-extant Edziza ice cap. To further constrain the age of the eruption exposure dating with cosmogenic chlorine-36 is the most viable method as demonstrated on Mauna Loa explosive deposits

    Composition Effects on Kilonova Spectra and Light Curves: I

    Full text link
    The merger of neutron star binaries is believed to eject a wide range of heavy elements into the universe. By observing the emission from this ejecta, scientists can probe the ejecta properties (mass, velocity and composition distributions). The emission (a.k.a. kilonova) is powered by the radioactive decay of the heavy isotopes produced in the merger and this emission is reprocessed by atomic opacities to optical and infra-red wavelengths. Understanding the ejecta properties requires calculating the dependence of this emission on these opacities. The strong lines in the optical and infra-red in lanthanide opacities have been shown to significantly alter the light-curves and spectra in these wavelength bands, arguing that the emission in these wavelengths can probe the composition of this ejecta. Here we study variations in the kilonova emission by varying individual lanthanide (and the actinide uranium) concentrations in the ejecta. The broad forest of lanthanide lines makes it difficult to determine the exact fraction of individual lanthanides. Nd is an exception. Its opacities above 1 micron are higher than other lanthanides and observations of kilonovae can potentially probe increased abundances of Nd. Similarly, at early times when the ejecta is still hot (first day), the U opacity is strong in the 0.2-1 micron wavelength range and kilonova observations may also be able to constrain these abundances

    Photolytic release of bioactive carboxylic acids from fused pyran conjugates

    Get PDF
    New ester cages bearing the coumarin (2H-benzopyran-2-one) skeleton with extended π-systems as phototriggers, for glycine and β-alanine, as models of carboxylic acid bifunctional molecules with biological relevance, were evaluated under photolysis conditions at 254, 300, 350 and 419 nm of irradiation in a RPR-100 photochemical reactor. The processes were followed by HPLC-UV detection and 1H NMR with collection of kinetic data. The results showed a correlation between the photolysis efficiency and the increasing extension of the conjugation for both glycine and β-alanine, showing that the 7-aminocoumarin afforded the best results at all wavelengths tested. From a study of the time-resolved fluorescence behaviour, these compounds were also found to exhibit more complex fluorescence decay kinetics. This was attributed to the presence of conjugated and non-conjugated coumarin species.Thanks are due to Fundação para a Ciência e Tecnologia (FCT) and FEDER (European Fund for Regional Development)-COMPETE-QREN-EU for financial support through the Chemistry Research Centre of the University of Minho (Ref. UID/QUI/00686/2013 and UID/ QUI/0686/2016). The NMR spectrometer Bruker Avance III 400 is part of the National NMR Network and was purchased within the framework of the National Program for Scientific Re-equipment, contract REDE/1517/RMN/2005 with funds from POCI 2010 (FEDER) and FCT.info:eu-repo/semantics/publishedVersio

    Acridinyl methyl esters as photoactive precursors in the release of neurotransmitter amino acids

    Get PDF
    An investigation of the use of an azaheterocycle, acridine, as an alternative photochemically removable protecting group for the carboxylic function of neurotransmitter amino acids was carried out. 9-Bromomethylacridine was used in the reaction with glycine, alanine, glutamic acid, β-alanine and γ-aminobutyric acid, to obtain model ester derivatives, which were irradiated at different wavelengths in a photochemical reactor. The process was followed by HPLC/UV, resulting in the release of the active molecule in short irradiation times. The results obtained using 419 nm irradiation show promise (35-98 min) for practical purposes. The compounds were further characterised via time-resolved fluorescence to elucidate their photophysical properties and determine the decay kinetics.Fundação para a Ciência e Tecnologia (FCT, Portugal) for financial support to the NMR portuguese network (PTNMR, Bruker Avance III 400-Univ. Minho), FCT and FEDER (European Fund for Regional Development)-COMPETE-QREN-EU for financial support to the research centre CQ/UM [PEst-C/QUI/UI0686/2011 (FCOMP-01-0124-FEDER-022716)] and project PTDC/QUI/69607/2006 (FCOMP-01-0124-FEDER-007449). FCT - a PhD grant to A.M.P. (SFRH/BD/61459/2009)

    The effect of 12C + 12C rate uncertainties on s-process yields

    Full text link
    The slow neutron capture process in massive stars (the weak s-process) produces most of the s-only isotopes in the mass region 60 < A < 90. The nuclear reaction rates used in simulations of this process have a profound effect on the final s-process yields. We generated 1D stellar models of a 25 solar mass star varying the 12C + 12C rate by a factor of 10 and calculated full nucleosynthesis using the post-processing code PPN. Increasing or decreasing the rate by a factor of 10 affects the convective history and nucleosynthesis, and consequently the final yields.Comment: Conference proceedings for the Nuclear Physics in Astrophysics IV conference, 8-12 June 2009. 4 pages, 3 figures. Accepted for publication to the Journal of Physics: Conference Serie
    corecore